
Ms. Nainaa. Udgedr et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 6), April 2014, pp.15-18

www.ijera.com 15 | P a g e

Detection of Stuck at Fault Indigital Circuits at Register Transfer

Logic (RTL)

Ms. Nainaa. Udgedr, S. A. Ladhake, Prof. P. D. Gawande
Assistant Professor Principle Faculty of Electr. &Telecom SipnaCOET, Amravati (M.H.)
Assosicate Professor Sipna COET, Amravati (M.H.)

Faculty of Electr. & Telecom. Sipna COET Amravati (M.H.)

Abstract
Due to the increasing complexity of modern circuit design, verification has become the major bottleneck of the

entire design process. Most efforts are to verify the correctness of the initial Register-Transfer Level (RTL)

descriptions written in Hardware Description Language (HDL).Major drawback of high level design

methodologies such as RTL can be seen in the following facts. First, they lack of sufficiently precise fault

models - compared to sophisticated models available for low level description levels such as logic gate level.

Second, since the structure of a design changes significantly with every logic synthesis run, testability analysis

is typically performed only after final logic synthesis.So in this paper, we detect the stuck-at fault using the

concept of textio.

Keywords-stuck-atfaults; fault coverage ;testpoints; validation sets

I. Introduction
Sinceintegrated circuit designs are

accordinglybecoming more and more complex. As a

result of this, VLSI testing has becomeexpensive in

terms of cost. Existinggatelevelfault simulation

techniques exhibitpoor performance standards

whenapplied to such designs and are unsuitable for

earlytestabilityanalysis or fault simulations. Also test

generation and fault simulation efforts in the post

synthesis phase do not contribute to the improvement

in the design. Therefore a design methodology for

fault simulation athigherlevels of abstraction

ishighlydesired.

Test patterns for large VLSI systems are

oftendeterminedfrom the knowledge of the circuit

function. A fault simulator isthenused to find the

effectiveness of the test patterns in detectinggate-

level “stuck-at” faults. Existinggate-levelfault

simulation techniques sufferprohibitivelyexpensive

performance penalties whenapplied to the modern

VLSI systems of larger sizes. Also, findings of such

test generation and fault simulation efforts in the post

logic-synthesis phase are toolate in the design cycle

to beuseful for design-for-test (DFT)

relatedimprovements in the architecture. Therefore,

an effective register-transferlevel (RTL) fault model

ishighlydesirable.

Basicallyfaultmodellingconsists of three

fundamentals terms i.e. defect, fault & error. Defect -

A defect is the unintended difference between the

implemented hardware and its intended design

Defects occur either during manufacture or during the

use of devices the use of devices Fault - A

representation of a defectat the abstracted function

level Error - A wrong output signal produced by a

defective system. An error is caused by a Faultor a

design error The problems of ideal tests are : Ideal

tests detect all defects produced in the manufacturing

process manufacturing process. Also,Ideal tests pass

all functionally good devices. „Very large numbers

and varieties of possible defectsneed to

betested.Difficult to generate tests for some real

defects. †

The problems of Real tests are ; Real tests

„Based on analyzablefaultmodels, whichmay not map

on real defects,Incompletecoverage of modeledfaults

due to high complexity,Some good chips are rejected.

The fraction (or percentage) of such chips is called

the yield loss „Some bad chips pass tests. The

fraction (or percentage) of bad chips among all

passing chips iscalled the defectlevel.

So in thispaperwe are emphasising on the detection

of stuck-atfaults in RTL circuits using the feature of

vhdllangauage i.e. textio, withoutcompromising in

faultcoverage.

II. Related work
Various methods are implemented to detect

the stuck-at fault in digital circuits.

A. Adding Buffer to each ports of RTL Circuits.

The very first method is adding buffer to

each ports of RTL circuits to create a new faulty

circuit[7].

RESEARCH ARTICLE OPEN ACCESS

Ms. Nainaa. Udgedr et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 6), April 2014, pp.15-18

www.ijera.com 16 | P a g e

1. Firstlytestbench is developed and the simulation

is first run on a good circuit and then on each of

the faulty circuits using any simulator.

2. The outputs obtained in each case of the faulty

circuits are compared with the output of the good

circuit to determine which faults are detected.

That is the new faulty circuit and the fault free

circuit is simulated and the outputs so obtained

are compared. The fault list is tabulated.

3. The ratio of the numbers of RTL faults detected

to the total number of RTL faults gives the RTL

fault coverage.

B. Using Validation Test Sets.

Next method is that in which validation test

sets are used to generate test sequences that detect a

majority of stuck-at faults in the datapath[1].

1. The scheme first derives the controller behaviors

from validation test sequences and reuses them

for simplifying justification/propagation analysis

corresponding to precomputedtest

vectors/responses of datapath RTL modules.

2. A heuristic is used to identify controller

behaviors that are compatible with a given set of

precomputed test vectors/responses. It requires

only a single pass through the CDFG

corresponding to a validation test sequence and

is accu- rate, resulting in a small number of test

generation runs.

3. Test generation is performed at the RTL and the

controller behavior is prespecified,which results

in very small ltest generationtimes.First step is

identification of compatible controller behaviors

consisting of Augmented Fault Simulation to

Derive Activation-Detection Time Frame Pair

and Analysis of Requirements to Identify

Compatible Faults. Next step is SAT-based RTL

ATPG is used to obtain a test sequence that

reuses the controller behavior to justify and

propagate the precomputed test vector and

response to primary inputs and outputs,

respectively.

SAT- based RTL ATPG uses an ILA model

of the circuit under test.The circuit is unrolled for a

predetermined number of cycles determined by the

number of vectors in the validation test sequence

from which the controller behavior is extracted. Test

generation is performed on the entire circuit

description comprising the controller and datapath by

first identifying the paths from the inputs of the

module under test to primary inputs and from the

output of the module under test to primary outputs in

the ILA model. These paths are then translated into

Boolean clauses by translating the functionality of the

individual modules in these paths. Once the Boolean

clauses that capture the RTL test generation problem

and the controller behavior are generated, a SAT

solver is invoked to resolve these clauses. If the

solver returns with a satisfiable solution, then a test

sequence can be extracted from the Boolean variable

assignments corresponding to the primary inputs.

This sequence is guaranteed to deliver the

precomputed test vector to the inputs of the

corresponding RTL module and propagate the fault

effect from the output of the module to a primary

output. If the Boolean clauses are not satisfiable, then

test generation fails, indicating that the targeted

precomputed test vector/response cannot be

justified/propagated by reusing the controller

behavior that was found to be compatible by using

the heuristic.

C. Implementation of Automatic Test Paterrn

Generation.

Next method for detection of stuck-at fault

consisting of an algorithm for generating test patterns

automatically from functional register-transfer level

(RTL) circuits that target detection of stuck-at faults

in the circuit at the logic level.

1. In order to do this, a data structure named

assignment decision diagram are used[5]. The

algorithm is very versatile and can tackle almost

any type of single- clock design, although

performance varies according to the design style.

The first step is to convert each process and

concurrent RTL statements in each leaf

component of the circuit into ADDs.

2. After that, each ADD is selected and its I

nternals targeted for testing. First the arithmetic

operations are targeted, then logic arrays, then

untagged registers, latches, and memories, then

untagged ADNs, and finally random logic blocks

and black boxes.

During testing of each RTL element, a nine-

valued symbolic RTL justification and propagation is

done to trace outpaths from the PIs to the element

inputs and element outputs to POs to obtain a

symbolic test environment for the module. The

search is a branch and bound type of search with

backtracking and has a backtrack limit and search

time limit that may be adjusted. It requires hierarchy

traversal in case of a hierarchical design.

III. RTL Fault Model, Fault-Injection

and Fault Simulation
Hardware description languages (HDLs) are

used to model VLSI circuits. HDL constructs are

classified into three types: structural, register-transfer

level (RTL) and behavioral. RTL constructs represent

a subset of HDL constructs with the corresponding

design guidelines meant to ensure the consistent

synthesis of gate-level netlists by logic synthesis

tools. With event scheduling and resource allocation

Ms. Nainaa. Udgedr et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 6), April 2014, pp.15-18

www.ijera.com 17 | P a g e

information built-in, an RTL model represents the

micro-architecture of a circuit.

Properties of the RTL fault model:

• Language operators (which map onto Boolean

components in the gate-level netlist) are assumed

to be fault-free.

• Variables (which map onto signal lines in the

gate-level netlist) contain faults:

• a stuck-at-zero (s-a-0) fault when the logic level

is fixed at value 0

• a stuck-at-one (s-a-1) fault when the logilevel is

fixed at value 1

• The proposed RTL fault model follows the

single fault assumption and therefore only one

fault is applied at a time when a test set is

evaluated.

 • The RTL fault-list of a module contains input as

well as fan-out faults. RTL variables that are

used more than once in executable statements or

the instantiations of lower level modules of the

design-hierarchy are considered to have fan-out.

Input faults of a module at the RT level have

one-to-one equivalence to input faults of the

module at the gate-level. The fan-out faults of

variables inside a module at the RT level

represent a subset of the fan-out faults of a

possible gate-level implementation.

3.1 Fault Model And Fault Injection

The definition of the RTL fault model and

the fault- injection algorithm encompasses modeling

of faults for synthetic, Boolean and logical operators,

sequential elements and fan-out/stem variables, as

well as the collapsing of RTL faults. RTL faults are

depicted with crosses (“x”) in Figure 1. When RTL

constructs contain synthetic operators, faults are

injected only on the input variables of such operators.

During logic synthesis, the synthetic operators are

replaced by combinational circuits implementing the

respective functions, e.g., adder, subtracter,

comparator, etc. The internal details of such functions

represented by synthetic operators are not available at

the RT level and therefore only the subset of the

checkpoint faults of the gate-level representation of

these operators, namely, the primary input faults are

modeled. When a function is represented using RTL

constructs that contain Boolean operators, faults are

injected on variables that form Boolean equations.

Some internal signals of these constructs are

available at the RT level and therefore RTL faults are

placed at primary inputs and internal nodes including

signal stems and fan-outs. The post-synthesis gate-

level representation of such a construct may be

structurally different from the RTL Boolean

representation. However, some RTL faults have

equivalent faults in a collapsed gate-level fault-list of

any post-synthesis design.

3.2 Fault Simulation

The operation of DUT is analysised on the

basis of inputs and outputs. The variation in the

output indicates the presence of fault in the circuit.

The steps of testing are demonstrated in the

below flow diagram:

The faulty circuit is simulated first using software

modelsim.After this,detection of fault is done by

analysis the individual paths of transmission of

output inside the circuit, they are known as test

points.

In our circuit four testpoints are there.Finally, the

results of good cicuit i.e. expected results and the

results of faulty circuit i.e. actual results , both are

compared by simulating the circuit in which expected

results are taken as inputs of the circuit.

The values of signals sf_test1, sf_test2, sf_test3,

sf_test4 indicateds the presence of stuck-at faults in

the circuit. The signals values ie. sf_test1, sf_test2,

sf_test3, sf_test4, for faulty circuit has the values of

testpoints, which indicates the fault :

IV. Results
A versatileRTL-ATPG algorithm is

presented that can generate test vectors for almostany

 Textio

(ATPG)

.vhd

code

Design under test

(DUT)

Expectedresult

(.txt file) Actual

result(.txtfile

)

Comparision of two result(.txt file)

Ms. Nainaa. Udgedr et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 4(Version 6), April 2014, pp.15-18

www.ijera.com 18 | P a g e

type of single-clock functional RTL design. The

algorithmuses a data structure called ADD that helps

it to tackle controland data flow in an unified fashion

and a nine-valued algebrathat helps it to do

justification and propagation at the RTL.

Here, we are using the concept of textio for

the detection of stuck-at fault in the circuit.” Textio”

is one of the easier way of fault modelling and fault

coverage is calculated without any consicounses.

Below given output file which is generated

after comparison of actual results and expected

results indicates the presence of stuck-at fault.

In the above table of output, A,B,C,D&

RESET are taken as inputs.Test1,Test2,Test3,Test4

are taken as the test points of the circuit. The values

of outputs i.e. SF_Test1, SF_Test2, SF_Test3,

SF_Test4 indicates the presences of stuck-at fault in

the circuit.If there is the fault for any one of the

inputs then, SF_Test1,SF_Test2,SF_Test3,SF_Test4

takes the values of Test1,Test2,Test3,Test4 otherwise

it has the null ’z’ value.

Since for the set of 15 inputs, we get the

proper outputs and fault is detected for any particular

combination of inputs,therefore fault coverage for

given circuit is 100%.

V. Conclusion

The very first method to fault modelling

methodology has used a validation test sets to

generate test sequence that have goos stuck-at fault

coverage for RTL circuits.This method results in very

small test generation times.

After this method,RTL-ATPG algorithm

was presented to generate test vectors for single clock

functional RTL design.thealgoritm uses a data

structure called ADD.

But here in this paper concept of textio is

used to detect the stuck-at fault in RTL circuit.Also,

this method results in easier estimation of fault

coverage.This leads to the better efficiency of this

method than previously used methods of fault

coverage in RTL circuits.

References
[1] R. C. Ho and M. A. Horowitz, “Validation

coverageanalysis for complex digital

designs,” in Proc. Int. Conf. Comput.-Aided

Des., Nov. 1996.

[2] I. Ghosh, A. Raghunathan, and N. K. Jha,

“A design for testability technique of RTL

circuits using control/data flow extraction,”

in Proc. Int. Conf. Comput.-Aided Des.,

Nov. 1996.

[3] D. J. Moundanos, J. A. Abraham, and Y. V.

Hoskote, “Abstraction techniques for

validation coverageanalysis and test

generation,” IEEE Trans. Comput. Jan.

1998.

[4] IndradeepGhosh and Srivaths Ravi, “On

AutomaticGeneration of RTL Validation

Test BenchesUsing Circuit Testing

Techniques” Fujitsu Laboratories of

America, Sunnyvale, CA

94086,NECLaboratoriesAmerica, Princeton,

NJ 08540, 2001.

[5] IndradeepGhosh and MasahiroFujita,

“Automatic Test Pattern Generation for

FunctionalRegister-Transfer Level Circuits

UsingAssignmentDecisionDiagrams” ieee

transactions on computer-aided design of

integrated circuits and systems, vol. 20, no.

3, march 2001.

[6] L. Lingappan and N. K. Jha,

“Unsatisfiabilitybasedefficient design for

testability solution for register-transferlevel

circuits,” in Proc. VLSI Test Symp., May

2005.

[7] SumaM.S. ,K.S.Gurumurthy “FaultCoverage

for digital circuits at RTL”2011.

[8] SarveshPrabhu, Michael S. Hsiao,

LoganathanLingappan and VijayGangaram,

“A SMT-based Diagnostic Test

GenerationMethod for Combinational

Circuits” ieee 30th vlsi test symposium (vts)

2012.

r

e

s

e

t

A B C D O

_

t

e

s

t

1

O

_

t

e

s

t

2

O

_

t

e

s

t

3

O

_

t

e

s

t

4

t

e

s

t

1

t

e

s

t

2

t

e

s

t

3

t

e

s

t

4

S

F

_

t

e

s

t

1

S

F

_

t

e

s

t

2

S

F

_

t

e

s

t

3

S

F_

te

st

4

0 1 0 0 0 0 0 0 0 0 0 0 0 z z z z

0 0 0 0 1 1 1 0 0 1 1 0 0 z z z z

0 0 0 0 0 1 1 1 1 1 1 1 1 z z z z

0 0 0 0 1 1 1 0 0 1 1 0 0 z z z z

0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 z

0 0 1 0 0 1 1 1 1 1 1 1 1 z z z z

0 0 1 0 1 1 1 0 0 1 1 0 0 z z z z

0 0 1 1 0 0 0 0 0 0 0 0 0 z z z z

0 0 1 1 1 0 0 1 0 0 0 1 0 z z z z

0 1 0 0 0 1 0 1 0 1 0 1 0 z z z z

0 1 0 0 1 1 0 0 0 1 0 0 0 z z z z

0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 z

0 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 1

